Interactions and predicted host membrane topology of the enteropathogenic Escherichia coli translocator protein EspB.
نویسندگان
چکیده
Type 3 secretion systems (T3SSs) are critical for the virulence of numerous deadly Gram-negative pathogens. T3SS translocator proteins are required for effector proteins to traverse the host cell membrane and perturb cell function. Translocator proteins include two hydrophobic proteins, represented in enteropathogenic Escherichia coli (EPEC) by EspB and EspD, which are thought to interact and form a pore in the host membrane. Here we adapted a sequence motif recognized by a host kinase to demonstrate that residues on the carboxyl-terminal side of the EspB transmembrane domain are localized to the host cell cytoplasm. Using functional internal polyhistidine tags, we confirm an interaction between EspD and EspB, and we demonstrate, for the first time, an interaction between EspD and the hydrophilic translocator protein EspA. Using a panel of espB insertion mutations, we describe two regions on either side of a putative transmembrane domain that are required for the binding of EspB to EspD. Finally, we demonstrate that EspB variants incapable of binding EspD fail to adopt the proper host cell membrane topology. These results provide new insights into interactions between translocator proteins critical for virulence.
منابع مشابه
Alpha 1-antitrypsin binds to and interferes with functionality of EspB from atypical and typical enteropathogenic Escherichia coli strains.
Enteropathogenic Escherichia coli (EPEC), including diffusely adhering atypical E. coli, strains use a type III secretion system to deliver effector proteins into the membrane and cytoplasm of infected cells. The E. coli secreted proteins A, B, and D (EspA, EspB, and EspD) are required for the formation of the characteristic attaching and effacing (A/E) lesions. EspB and EspD are thought to for...
متن کاملExpression of the EspB protein of enteropathogenic Escherichia coli within HeLa cells affects stress fibers and cellular morphology.
The EspB protein of enteropathogenic Escherichia coli (EPEC) is essential for the signaling events that lead to the accumulation of actin beneath intimately attached bacteria, a process that is known as the attaching and effacing effect. EspB is targeted to the host cell cytoplasm by a type III secretion apparatus. To determine the effect of intracellular EspB on the host cell cytoskeleton, we ...
متن کاملCesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli are extracellular pathogens that employ a type III secretion system to export translocator and effector proteins, proteins which facilitates colonization of the mucosal surface of the intestine via formation of attaching and effacing (A/E) lesions. The genes encoding the proteins for A/E lesion formation are located on a pat...
متن کاملCharacterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature.
Enteropathogenic Escherichia coli (EPEC) and rabbit EPEC (RDEC-1) cause unique histopathological features on intestinal mucosa, including attaching/effacing (A/E) lesions. Due to the human specificity of EPEC, RDEC-1 has been used as an animal model to study EPEC pathogenesis. At least two of the previously identified EPEC-secreted proteins, EspA and EspB, are required for triggering host epith...
متن کاملSepD/SepL-dependent secretion signals of the type III secretion system translocator proteins in enteropathogenic Escherichia coli.
UNLABELLED The type III protein secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE) is essential for the pathogenesis of attaching/effacing bacterial pathogens, including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and Citrobacter rodentium. These pathogens use the T3SS to sequentially secrete three categories of proteins: the T3SS needle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 193 12 شماره
صفحات -
تاریخ انتشار 2011